Numerical solution of functional integral equations by using B-splines

نویسندگان

  • A. Heidarnejad Khoob Department of Mathematics, Islamic Azad University, Tehran, Iran
  • R. Firouzdor Department of Mathematics, Islamic Azad University and Young Researcher Club, Central Tehran Branch, Tehran, Iran
  • Z. Mollaramezani Department of Mathematics, Payameh noor university, New City Hashgerd, Hashgerd, Iran
چکیده مقاله:

This paper describes an approximating solution, based on Lagrange interpolation and spline functions, to treat functional integral equations of Fredholm type and Volterra type. This method can be extended to functional differential and integro-differential equations. For showing efficiency of the method we give some numerical examples.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

numerical solution of functional integral equations by using b-splines

this paper describes an approximating solution, based on lagrange interpolation and spline functions, to treat functional integral equations of fredholm type and volterra type. this method can be extended to functional di erential and integro-di erential equations. for showing eciency of the method we give some numerical examples.

متن کامل

Galerkin Method for the Numerical Solution of the Advection-Diffusion Equation by Using Exponential B-splines

In this paper, the exponential B-spline functions are used for the numerical solution of the advection-diffusion equation. Two numerical examples related to pure advection in a finitely long channel and the distribution of an initial Gaussian pulse are employed to illustrate the accuracy and the efficiency of the method. Obtained results are compared with some early studies.

متن کامل

NUMERICAL SOLUTION OF DELAY INTEGRAL EQUATIONS BY USING BLOCK PULSE FUNCTIONS ARISES IN BIOLOGICAL SCIENCES

This article proposes a direct method for solving three types of integral equations with time delay. By using operational matrix of integration, integral equations can be reduced to a linear lower triangular system which can be directly solved by forward substitution. Numerical examples shows that the proposed scheme have a suitable degree of accuracy.  

متن کامل

Numerical solution of nonlinear Hammerstein integral equations by using Legendre-Bernstein basis

In this study a numerical method is developed to solve the Hammerstein integral equations. To this end the kernel has been approximated using the leastsquares approximation schemes based on Legender-Bernstein basis. The Legender polynomials are orthogonal and these properties improve the accuracy of the approximations. Also the nonlinear unknown function has been approximated by using the Berns...

متن کامل

An efficient method for the numerical solution of functional integral equations

We propose an efficient mesh-less method for functional integral equations. Its convergence analysis has been provided. It is tested via a few numerical experiments which show the efficiency and applicability of the proposed method. Attractive numerical results have been obtained.

متن کامل

Numerical Solution of Optimal Control Problems Using B-Splines

This paper explores numerical solutions of optimal control problems using B–Spline curves. It is aimed to give a general framework on how to use B–Splines to formulate optimal control problems and to solve them numerically using Nonlinear Trajectory Generation software package. Effects of the selection of the B–Spline parameters, such as, number of intervals, smoothness, piecewise polynomial or...

متن کامل

منابع من

با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ذخیره در منابع من قبلا به منابع من ذحیره شده

{@ msg_add @}


عنوان ژورنال

دوره 01  شماره 01

صفحات  45- 53

تاریخ انتشار 2012-03-01

با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.

میزبانی شده توسط پلتفرم ابری doprax.com

copyright © 2015-2023